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Early-time kinetics of ordering in the presence of interactions with a concentration field

H. P. Fischer and W. Dieterich
Fakultät für Physik, Universita¨t Konstanz, D-78434 Konstanz, Germany

~Received 26 March 1997!

The interplay between ordering and spinodal decomposition in binary systems is investigated within time-
dependent Ginzburg-Landau theory for two coupled order parameters describing structural order and the
concentration. The linearized theory suggests a classification of possible instabilities, and the associated mode
spectra display marked deviations from the predictions of the conventional Cahn-Hilliard theory. Numerical
calculations for a simplified model indicate the possibility of sequences of instabilities. We also show that the
relative magnitude of kinetic coefficients can have a profound influence on the observed domain patterns.
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I. INTRODUCTION

Consider a binary system that undergoes a first-or
phase transition where the disordered mixture transform
an ordered structure via diffusional motions of atoms or m
ecules. Physical examples include many solid materials s
as metallic alloys@1# or adsorbed layers on solid substrat
@2#, but are also known in the field of complex fluids@3#.

In the following we assume the transition to be strongly
first order~as, for example, in the Li-Al or Mg-In alloy sys
tem!, i.e., to display a pronounced miscibility gap in th
(T,c) plane of the phase diagram. HereT denotes tempera
ture andc is an atomic concentration variable. A commo
way to study the dynamics of the transition is to quench
system from an initial disordered equilibrium phase, thea
phase, at temperatureTi to a final temperatureTf inside the
two-phase region separating thea phase from the orderedb
phase. The subsequent time evolution of the system will t
be governed by an interplay of ordering and phase sep
tion. In particular, after a quench into the regime where tha
phase is unstable, spontaneous growth of fluctuations of
underlying structural order parameterc and growth of long-
wavelength concentration fluctuations become compe
processes. Previous work, based on thermodynamic a
ments @4# and on studies of microscopic kinetic mode
@5–7#, has shown that this can lead to a sequence of in
bilities and to a variety of transient structures in the ea
stages of the process. In fact, processes of homogen
~‘‘congruent’’ @5#! ordering and subsequent decompositi
have been detected experimentally, for example, in thea-d8
transition of Li-Al alloys, although the question concernin
the nature of the second process seems to be open up to
@8,9#.

In this paper we investigate a time-dependent Ginzbu
Landau model that provides a minimal description of t
interplay of ordering and spinodal decomposition. In the la
guage of Hohenberg and Halperin@10# we will be concerned
with ‘‘model C,’’ which in its simplest form consists o
coupled equations of motion for a one-component, nonc
served order parameter fieldc(r ,t) and a conserved concen
tration field c(r ,t). In the absence of thermal noise, the
equations take the form
561063-651X/97/56~6!/6909~8!/$10.00
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]c

]t
5GcD

dF

dc
, ~1!

]c

]t
52Gc

dF

dc
, ~2!

where F@c,c# denotes the underlying Ginzburg-Landa
free-energy functional andGc andGc are phenomenologica
kinetic coefficients. The late-stage dynamics of model
have been investigated recently by a number of authors@11–
13#. By contrast, we will focus here on the early stages
fore domain coarsening becomes the dominant proc
where our model shows more structure than the conventio
Cahn-Hilliard theory ~‘‘model B’’ !. After discussing the
main properties of the free energy surface and the reduc
of our equations of motion to a dimensionless form~Sec. II!,
we present in Sec. III the linearized theory, from which w
infer a systematic classification of different kinetic instabi
ties. Their physical significance is confirmed in subsequ
numerical solutions of the nonlinear problem~Sec. IV!.
Thereby, we show that after a sudden quench from tha
phase a temporal sequence of instabilities can occur. In
for the case of fast structural relaxation we observe ‘‘cong
ent ordering’’ @5# prior to an unstable growth of concentra
tion fluctuations, which, however, remain strongly coupl
to the structural order parameter. Both of these succes
instabilities have a character as predicted by the lineari
theory. By contrast, in the case of slow structural relaxati
ordering and phase separation occur simultaneously. A
result, we obtain strongly fluctuating patterns whose str
ture factors cannot be described by the linearized theor
any relevant time interval. The distinction of fast and slo
structural relaxation becomes even more relevant if the s
right after the quench is close to the ‘‘conditional’’ spinod
@4#. In this way we find different kinetic scenarios dependi
on the quench conditions and on the relative magnitude
the kinetic coefficientsGc andGc . A summary of our results
together with a discussion of their experimental relevanc
given in the last section.
6909 © 1997 The American Physical Society
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II. GINZBURG-LANDAU MODEL

Our starting point is a free-energy functionalF@c,c# of
the Ginzburg-Landau form

F@c,c#5E d3r F f ~c,c!1
1

2
Kc~¹c!21

1

2
Kc~¹c!2G ,

~3!

where, for simplicity, we assume that the free-energy dens
f of a uniform state satisfiesf (c,c)5 f (c,2c). This sym-
metry condition applies, for example, to metallic alloy
where the ordered state can be described by the prefere
occupation of one of two equivalent sublattices.

At this point let us further specify the general character
the function f (c,c). First, considering a fixed temperatur
T5Tf , it should allow for coexistence of a stable disorder
phase (ca50) with concentrationca and an ordered phase
(cb ,cb). Hence the grand canonical potentialf 2mc, where
m denotes the chemical potential, displays local minima
the corresponding points in the (c,c) plane~see Fig. 1!, with
f a2mca5 f b2mcb . To be specific, suppose that ordering
favored upon increasing the concentration, and thereforecb
.ca . Next, we assume a pointcos.ca on thec axis in Fig.
1, which corresponds to the ordering spinodal, such t
( f cc)c50:0 for c"cos , respectively. Here we use the no
tation (]/]c) f [ f c , etc. Finally, for fixedc, f has a mini-
mum with respect toc along a curveĉ(c) in the (c,c)
plane, which satisfiesf c50 and necessarily passes the o
dered state (cb ,cb). This curve is indicated in Fig. 1 by the
solid line. It is natural to assume that this curve also me
the ordering spinodal (cos ,c50). @In fact, by expanding
f (c,c) it is seen that a curve satisfyingf c50 enters the

FIG. 1. Contourplot for the thermodynamic potential Eq.~6! in
the (c,c) plane (c>0). Here the compositional variablec is cho-
sen such that the disordered phase hasca50, whereas the ordered
phase corresponds tocb5cb51. The curveĉ(c), which satisfies
f c50, is represented by the solid line. The ordering spinodal
reached atcos50.125. The dashed curve corresponds to detH50,
whereH is defined by Eq.~15!; it is the limit of the unstable region
of the free-energy surface. The intersection of the dashed and
solid line defines the conditional spinodal atccs50.625.
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point (cos ,c50) with vertical slope.# Clearly, at that
point, the concentration-dependent free-energy density of
disordered phase,f a(c)5 f (c,c50), and the ‘‘conditional
free-energy density’’ @4# of the ordered phase,f b(c)
5 f „c,ĉ(c)…, are equal. A simple form forf (c,c) consistent
with these requirements is

f ~c,c!5 f 0~c!1 f 1~c!2hcc2, ~4!

where

f 1~c!5rc21uc41vc6, ~5!

with h.0, r 5hcos , u.0, v.0, and f 09(c).0 in some
range of concentrations larger thancos . An example used
later in numerical calculations is

f ~c,c!2mc5c2~12c2!214~c22c!2, ~6!

with ca50, cb51, andcb51. The contour plot in Fig. 1 is
actually based on this expression. Also shown in Fig. 1 is
concentrationccs corresponding to the ‘‘conditional spin
odal’’ @4# defined byd2f b /dc250. Since in this work we are
not interested in the formation of antiphase domains, we
strict ourselves in the following to statesc>0.

After this discussion of the essential structure of the fr
energy densityf (c,c), we turn now to the dynamical equa
tions ~1! and ~2! and rewrite them in dimensionless form
This can be achieved in different ways; in the version pr
ered here, thermodynamic and kinetic factors remain se
rated. Lengths will be measured in units of a lengthj, i.e.,
r /j→r , which for convenience may be chosen as the co
lation length of the structural order parameter,j
;(Kc /r )1/2. Furthermore, we introduce dimensionless ord
parameters by settingc/c0→c, c/c0→c, where we require
c0

2Kc5c0
2Kc . The remaining freedom in the orde

parameter amplitudesc0 and c0 can be used to rescale th
analytical expression for the functionf (c,c). Finally, the
replacementsf /(j2Kc)→ f andtGcKc /j4→t lead to the fol-
lowing form of Eqs.~1! and ~2!:

]c

]t
5DS 2Dc1

] f

]cD , ~7!

]c

]t
52GS 2Dc1

] f

]c D , ~8!

with the dimensionless coefficient

G5j2GcKc /GcKc . ~9!

III. LINEARIZED THEORY

Within the framework of a linearized theory, we examin
the temporal evolution of an initially uniform, stationar
state (c̄,c̄) satisfying (f c) c̄ ,c̄50. Hence the correspondin
point (c̄,c̄) in Fig. 1 either lies on thec axis (c̄50) or on
the curveĉ(c). It is convenient to introduce a vector nota
tion
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56 6911EARLY-TIME KINETICS OF ORDERING IN THE . . .
x~r ,t !5F c~r ,t !
c~r ,t !G , x05F c̄

cG . ~10!

After linearization with respect to small deviationsdx
from the initial statex0 , Eqs. ~7! and ~8! are solved by
writing

x~r ,t !5x01dx exp~ ik•r1vt !, ~11!

which for fixed wave vectork yields a (232) eigenvalue
problem

A dx52v dx, ~12!

where

A5T~H1k2I !, ~13!

with

T5Fk2

0
0
G G ~14!

and

H5F f cc

f cc

f cc

f cc
G . ~15!

I is the (232) unit matrix, and the derivatives in Eq.~15!
are taken atx0 . Since A is a product of two symmetric
matrices, withT positive definite forkÞ0, the eigenvalues
v1,2 of A are real. Explicitly,

v1,2~k!52~A111A226AD !/2, ~16!

with

D5~A112A22!
214A12A21. ~17!

For these two ‘‘dispersion branches’’v1,2(k), we use in
the following the notation v6(k), such that v1(k)
.v2(k). It should be noted here that unlike the conve
tional Cahn-Hilliard theory, the behavior of the two branch
as a function ofk in general depends onG, i.e., on the ratio
of the two kinetic coefficientsGc andGc ; cf. Eq. ~9!. Thatk
dependence can be discussed most directly by conside
the following special cases. In the limitk→0 we have the
two solutions

v1~k!.2~detH/ f cc!k21O~k4!, ~18!

v2~k!.2~G f cc1gk2!1O~k4!, ~19!

with

g5G1 f cc
2 / f cc , ~20!

whose assignment tov6(k) will depend on the signs of de
H and f cc . In the opposite limit of largek, the two equa-
tions ~12! become uncoupled, and we find

v2~k!;2k4, ~21!

v1~k!;2Gk2. ~22!
-
s

ng

Next we obtain the critical wave numberskc.0, defined
by v6(kc)50. Let l1 andl2 be the eigenvalues of the ma
trix H. From Eq.~12! it follows immediately that the critical
wave numbers are determined by the negative eigenvalue
H: If ln,0, then

kc,n
2 52ln . ~23!

Therefore the range of unstable fluctuations 0,k,kc,n in
the corresponding branch depends on the couplingf cc be-
tween order-parameter and concentration modes, but i
course independent ofG. We also conclude that the numbe
of unstable branches is given by the number of negative
genvalues ofH.

The above considerations already allow us to classify
possible types of dispersion relationsv6(k) according to the
signs of detH5l1l2 and of f cc . Four cases, schematicall
depicted in Fig. 2, can be distinguished.

A. case„I …: f cc>0, detH>0

These two conditions imply that both eigenvaluesl1,2 are
positive. This is a stable situation, as illustrated in Fig. 2~a!.

B. case„II …: f cc<0, detH<0

In contrast to the previous case,H has one negative ei
genvalue. This leads to one unstable branch, whose dis
sion relationv1(k) for smallk is given by Eq.~19!: see Fig.
2~b!. Its eigenvector in the limitk→0 only retains ac com-
ponent and thus corresponds to growth of structural order
the absence of any coupling (f cc50), this branch would
describe a ‘‘model-A’’-like instability@10#; the associated
critical wave vectorkc determines a typical length sca
2pkc

21 of ordered domains in the initial stages of orderin
@If f ccÞ0, the coefficientg, Eq. ~20!, may turn negative.
The unstable branch then behaves as indicated by the da
line in Fig. 2~b!.#

C. case„III …: f cc>0, detH<0

Again, we have one unstable branch@Fig. 2~c!#, which
now corresponds to Eq.~18!, showing that it starts out from
zero with positive curvature. Note that in view off c50 the

FIG. 2. Schematic behavior of mode spectra for the four p
sible combinations of sgn(fcc) and sgn(detH).
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6912 56H. P. FISCHER AND W. DIETERICH
coefficient in front of thek2 term in Eq. ~18! is equal to
d2f b /dc2. The eigenvector of the unstable branch is
mixed character for allk, which means that in general w
encounter simultaneous growth of order-parameter and
centration fluctuations. Atk50 the componentsdc and dc
of the eigenvectordx satisfydc/dc52 f cc / f cc ; hence, the
eigenvector is tangential to the curveĉ(c).

D. case„IV …: f cc<0, detH>0

Here we have two unstable branches, as shown in
2~d!. Again, the caseg,0 is indicated by the dashed line.

Let us now discuss the physical content of the forego
analysis by using the free-energy model described in Sec
Application of our calculations to a quench from thea phase
suggests that different ordering scenarios are possible. C
sider first the situation where the evolution starts from a r
erence state withc̄.cos , c̄50, and f cc.0. Then the pri-
mary instability corresponds to case~II !, where in our model
g.0. This is a conventional model-A-type instability, whe
ordering evolves in a uniform manner with maximum grow
at km50. Initial fluctuations in the concentration, howeve
will decay. Of course, the linear approximation breaks do
once the condition

udck50~ t !u5udck50~0!exp„@v1~0!t#…u!ucbu ~24!

ceases to be valid. Qualitatively, however, one expects
system to evolve further~beyond the linear regime! along a
trajectory in the (c,c) plane essentially oriented in thec
direction, until it reaches some homogeneous stationary s
(c1 ,c1) with c1. c̄, c1.ĉ( c̄), which satisfiesf cc(c1 ,c1)
.0. Clearly, this kind of description will be applicable on
if ‘‘spreading’’ of the trajectory remains negligibly smal
which requires thermal noise to be negligible and the proc
to be sufficiently rapid in comparison to phase separat
i.e., G@1. This type of ordering under constant compositi
~‘‘congruent ordering’’! has been analyzed recently by Ch
and Khachaturyan in numerical studies of certain discr
alloy models with specific sets of interaction constants@5,6#.

Suppose now that the stationary state (c1 ,c1) ~see above!
is taken as the reference state in the foregoing analysis.
state will be metastable if detH.0 @case~I!#, such that sub-
sequent equilibration proceeds via nucleation, but it will
unstable if detH,0. The limiting case detH50 corresponds
to the ‘‘conditional spinodal’’@4#. If detH,0, the situation
agrees with case~III !, which is reminiscent to conventiona
spinodal decomposition driven by the conditional free ene
f b(c). In comparison with the standard Cahn-Hillia
theory, however, some important differences should
noted. Spatial fluctuations in structural order and compo
tion remain coupled, according to the direction of the as
ciated eigenvector. This direction changes withk. @In gen-
eral, it is not tangential to the curveĉ(c), apart from
k50.# Furthermore, as mentioned before, the spectrum
unstable modes explicitly depends on the parameterG, i.e.,
on the ratio of kinetic coefficients. To give an example,
plot in Fig. 3 theG-dependent spectra of unstable modes a
the associated location of the maximum growth ratekm in k
space using the free-energy model, Eq.~6!, and a reference
statex1 with componentsc150.5, c15ĉ(c1).0.73. Note
f
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that km as a function ofG appears to display aG1/4 depen-
dence forG!1, whereaskm becomes constant forG@1.

Our discussion so far in this section suggests tha
quench to a statec̄.cos , c̄50 with f cc.0 actually can lead
to a sequence of two transformations, ifG@1, namely, the
buildup of an ordered structure under constant composi
and subsequent phase separation into coexisting ordered
disordered domains, accompanied by a relaxation of the
der parameters to their respective equilibrium values.
quences of instabilities are known from experiment@8,9# and
from the above-mentioned studies of specific lattice mod
@5–7#. In order to confirm the appearance of such pheno
ena within the frame of model C, we have solved nume
cally the nonlinear equations~7! and ~8!. Before we turn to
that, let us complete our discussion of Fig. 2 and consider
case~IV !. A sufficient condition for its occurrence isf cc
,0 together withf cc,0. Then the two eigenvectors of th
matrix A, Eq. ~13!, in an initial state withc̄50 will have the
form (dc,0) and ~0,dc!. We remark that this situation ha
some bearing on the work by Binderet al. @14#, who studied
spinodal decomposition in the presence of a slowly relax
~nonconserved! variablec, which, however, had no disper
sion (Kc50) and hence led to a different form of the mod
spectrum at largerk.

Experimentally, the dynamics of the transition are oft
studied with the aid of scattering techniques, which yie
information on the time-dependent structure factors,

Scc~k,t !5^udck~ t !u2&, Scc~k,t !5^udck~ t !u2&, ~25!

defined in terms of the Fourier componentsdck(t) and
dck(t) of concentration and order-parameter fluctuatio
Here averages are taken over the initial fluctuations. Ass
ing an instantaneous temperature quench, the initial value
t50 in Eq. ~25! correspond to the equilibrium structure fa
tors at the temperatureTi before the quench. In addition, w
define

Scc~k,t !5Rê dck~ t !dc2k~ t !&5Scc~k,t !. ~26!

FIG. 3. G dependence of unstable dispersion branchv1(k) cal-
culated from the model free energy, Eq.~6!, and a reference stat
c150.5,c15ĉ(c1).0.73 @see also Fig. 2~c!#. The inset shows the
wave vectorkm corresponding to maximum growth as a function
G.
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56 6913EARLY-TIME KINETICS OF ORDERING IN THE . . .
Equations~25! and ~26! are readily evaluated either by tak
ing Laplace transforms of the equations of motion, which
a matrix form are@15#

]

]t
S~ t !52@AS~ t !1S~ t !AT#, ~27!

whereAT denotes the transpose ofA, or by directly calcu-
lating dck(t) and dck(t) from the linearized equations o
motion. In Eq.~27! and in the rest of this section, we hav
dropped the variablek in our notation. The result is

Scc~ t !5a1e2v1t1be~v11v2!t1a2e2v2t, ~28!

with

a65@~A112v7!2Scc~0!12~A112v7!A12Scc~0!

1A12
2 Scc~0!#/D ~29!

and

b522@~A112v1!~A112v2!Scc~0!

1A12~A112A22!Scc~0!

1A12
2 Scc~0!#/D. ~30!

HereScc(0)50 if the quench is from thea phase.
An analogous expression is found forScc(t), which dif-

fers from the above expressions by exchanging indices 1↔2
and, correspondingly,c↔c. As seen from these results, th
structure factors display a nonexponential time depende
due to the superposition of three terms involving differe
rate constants. Their growth or decay with time depends
the behaviors ofv6 summarized in Fig. 2. Apart from cas
~I! ~see above!, the first term in Eq.~28! is the most rapidly
growing term. The behavior of the second term will be go
erned by (v11v2)52@G f cc1k2(G1 f cc)1k4#, which
can take either sign, whereas the last term will always de
with the exception of case~IV !.

IV. NUMERICAL SIMULATIONS

In this section we present some numerical solutions of
nonlinear equations~7! and ~8!, using a free energyf (c,c)
as given by Eq.~6!. One purpose of these calculations is
demonstrate that after a quench of thea phase below the
ordering spinodal our system can display a sequence o
stabilities of the type discussed before, provided thatG@1.
Such a scenario should be expected from the discussio
the previous section. A quite different behavior, howev
will arise for G,1, which corresponds to slow structur
relaxation. Intuitively, since in the (c,c) plane the evolution
in thec direction then is slow and proceeds in a region of
free-energy surface with detH,0 ~see Fig. 1!, we now ex-
pect the trajectories to spread initially as a consequenc
the fluctuations in the initial state. From the beginning t
process will then be characterized by a simultaneous oc
rence of ordering and phase separation and will be m
more sensitive to fluctuations than in the caseG@1.

For a first demonstration of these qualitative issues in
frame of our model, it suffices to study the problem in o
ce
t
n

-

y

e

n-

in
,

e

of
e
r-
h

e

dimension. Specifically, we take a system of lengthL5500
~in units of the correlation lengthj!, with periodic boundary
conditions@16#. Our initial conditions correspond to a mea
concentrationc̄ and random fluctuationsDc5Dc50.05.
Since in this study we are not interested in the formation
antiphase domains, we also include in the initial condition
small positive biasc̄50.05, which suppresses relaxation t
wards states withc,0. All results for the structure factor
are averaged over 300 independent initial configurations

First, let us consider the case of fast structural relaxat
e.g., G510. Figure 4 shows the time evolution of patter
within a section of length 200 of the system. Dashed lin
and solid lines represent the concentrationc(z,t) and the
structural order parameterc(z,t), respectively. The initial
concentrationc̄50.5 satisfiescos, c̄,ccs . Two stages are
clearly distinguished. In the first three configurations witht
&0.12, we observe thatc(z,t) stays close to the constantc̄,
whereasc(z,t) shows unstable growth and relaxes more
less homogeneously~with larger fluctuations aroundt
50.08! to a valuec1.0.73. Pictorially, this corresponds i
Fig. 1 to a transition in the vertical direction to a sta
(c1 ,c1) with c1. c̄ on the curveĉ(c). This state reached by
the process of ‘‘congruent ordering’’@6# persists without no-
table changes up to a timet.10. For larger times, see th
subsequent configurations in Fig. 4, we observe a sec
instability, initially characterized by coupled smal
amplitude concentration and order-parameter fluctuati
with a typical wave vectorkm.0.52 ~see below!. As time
proceeds, these fluctuations grow until the system break
into a nearly periodic structure of disordered and orde
domains which correspond to the two equilibrium phasea
andb. Comparing the patterns fort540 andt550, we also
see the onset of coarsening via period doubling@17#, which

FIG. 4. Simulated patternsc(z,t) ~dashed lines! and c(z,t)
~solid lines! at a series of times for an initial concentrationc̄
50.5, c̄50, andG510, showing the emergence and the transi
persistence of a homogeneously ordered state up to aboutt510 and
subsequent decomposition.
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6914 56H. P. FISCHER AND W. DIETERICH
is an effect specific to one dimension.
In their respective short-time regimes, the two instabilit

displayed in Fig. 4 can be related to the predictions of
linearized theory with reference statesx05( c̄,0) and x1
5( c̄,c1), respectively. To show this we first plot in Fig.
the structure factorScc(k,t) normalized with respect to
Scc(k,0) on a logarithmic scale, for a series of times up
t50.08. These results are compared with the lineari
theory of Sec. III~see the dotted lines!, which simply gives
ln@Scc(k,t)/Scc(k,0)#.2v1(k)t as the leading contribution
Herev1(k) is calculated with respect to the reference st
x0 . This yieldskc.2.4 and a maximum growth rate atkm
50 @see the behavior of the unstable branch in Fig. 2~b!#.
Good quantitative agreement is found in Fig. 5 up to tim
t;531022. The inset shows a corresponding comparis
between the simulated total intensity,

I cc~ t !5(
k

Scc~k,t !. ~31!

and the approximate result lnIcc(t);2v1(0)t of the linear-
ized theory.

An analogous comparison can be made for the sec
instability. As ‘‘initial’’ time we choose t055, where the
system is close to a homogeneously ordered state chara
ized by x1 ~cf. Fig. 4!. In order to eliminate the unknown
fluctuations in that state, we study the evolution ofScc(k,t)
normalized with respect toScc(k,t0). Apart from smallk,
Fig. 6 essentially confirms a growth according to the pred
tions of the linearized theory, ln@Scc(k,t)/Scc(k,t0)#.2v1(k)(t
2t0), as long ast&30. The growth ratev1(k) is calculated
here from the reference statex1 and corresponds to the upp
dispersion branch in Fig. 2~c!. In particular, the location of
the wave vectorkm.0.52 for maximum growth and the criti
cal wave vectorkc.0.75 nicely agrees with the linearize
theory~see the arrows in Fig. 6!. This comparison, of course
becomes meaningless for longer timest*30, where the

FIG. 5. Normalized time-dependent structure factorScc(k,t) for
different times t50.01 up to t50.08 in steps of 0.01, usingc̄
50.5, c̄50, andG510 ~see the patterns of Fig. 4!. Dotted lines:
predictions of the linearized theory. The inset shows the total in
sity I cc(t). The dashed straight line has a slope 2v1(0).
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structure factor appears to develop a second peak nearkm/2,
which reflects period doubling. We also calculated the in
grated intensityI cc(t)5SkScc(k,t), which is compared in
the inset with the leading behavior according to the line
ized theory lnIcc(t);2v1(km)(t2t0).

Next, we turn to the situation of slow structural relaxatio
and chooseG50.1, c̄50.5. Our calculations show that spa
tial fluctuations inc(z,t) and c(z,t) now evolve simulta-
neously. These fluctuations have a considerably larger
plitude than in Fig. 4 for timest&30, and the patterns appea
more irregular. This can be understood qualitatively from
aforementioned ‘‘spreading’’ of trajectories, which is illus
trated in Fig. 7. Starting from one particular configuration

n-

FIG. 6. Normalized time-dependent structure factorScc(k,t) for
different times t510 up to t535 in steps of 5 using the sam
parameters as in Figs. 4 and 5.@Curves for the larger times displa
increased statistical fluctuations ink regions where the normalisa
tion factor Scc(k,t55) is small.# Dotted lines: predictions of the
linearized theory with the same reference state as in Fig. 3. Arr
indicate the associated wave vectorskm.0.52 andkc.0.75. The
inset shows the total intensityI cc(t). The dashed straight line has
slope 2v1(km).

FIG. 7. Spread of trajectories in the (c,c) plane due to fluctua-
tions, forG50.1 ~see text!.
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initial fluctuations, we plotted pairs of calculated valu
c(z,t), c(z,t) for some fixedz, while time progresses in
stepsDt50.5, which yields a discrete trajectory. Repeati
this construction for differentz leads to a set of trajectorie
which evolve under increasing their mutual distances, be
they reach a common curve. This curve can be shown to
closely related to the equilibrium profile of a free interfa
between thea and b phases, which satisfiesdF/dc50,
dF/dc50. @By contrast, if the same analysis were done
G510 and for the same initial fluctuation amplitudes, th
all such trajectories almost would collapse until they rea
the curve ĉ(c) at a rather well-defined pointc̄.0.5, c1
.0.73.# The whole process forG50.1 can be regarded a
spinodal decomposition where the initial fluctuations are a
plified strongly through the concurrent nonlinear structu
relaxation. As a consequence, one can show that the stru
factor Scc(k,t) displays a much broader distribution than
Fig. 6 and that the linearized theory fails to describeScc(k,t)
in any time interval.

A particularly interesting situation occurs when the init
concentration is outside the conditional spinodal regionc̄
.ccs . For largeG the initial ordering process will then lea
to a homogeneous metastable state. However, for smaG,
part of the trajectories will reach the unstable region of
curve ĉ(c) and initiate phase separation. This is seen fr
the patterns in Fig. 8, which were calculated forc̄50.65 and
G50.1. There a localized fluctuation is observed which
increasing time becomes a nucleus of the disordered ph
while the rest of the system relaxes towardsc andc values
which correspond to the metastable part of the curveĉ(c).
For a given magnitude of the initial fluctuations, the fr
quency of the occurrence of sucha-phase nuclei and the
associated length scale depends sensitively onG. It follows
that the quantityccs loses its physical significance as th
concentration which separates the metastable from the
stable part of the curveĉ(c), whenG becomes small. The
fact that fluctuations generally prevent a precise location

FIG. 8. Simulated patternsc(z,t) ~dashed lines! and c(z,t)
~solid lines! at different times for c̄50.65.ccs50.625 andG
50.1.
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spinodal was emphasized long ago by Binder@18#. As indi-
cated above, the relevant fluctuations here are not just
equilibrium fluctuations in the state before the quench,
amplified fluctuations, which grow asG becomes smaller.

Finally, we also calculated the structure factorScc(k,t)
related to the patterns in Fig. 8. Fort&20 it develops a main
peak at a wave vector which reflects the typical spatial
tension ofa-phase nuclei. Additional calculations for muc
larger times~up to t.103! show that these nuclei underg
diffusive growth and that the main peak inScc(k,t) shifts to
smaller wave vectors. At the same timeb-phase domains
develop from the rim ofa-phase nuclei. Phase separatio
initiated at very short times by a spinodal mechanism, th
proceeds via growth ofa andb domains out of a metastabl
background. In principle, such considerations might apply
quench experiments in alloys, where the state right after
quench is close to the conditional spinodal.

V. SUMMARY AND CONCLUSIONS

We investigated some general aspects in the early-t
kinetics of ordering and phase separation within coup
time-dependent Ginzburg-Landau equations of the type
model C @10#. This model provides a simple, yet gener
frame for discussing different ordering scenarios as dete
previously in kinetic mean-field theories for specific allo
models@4–7# and in addition allows us to demonstrate t
importance of kinetic effects in determining the tim
dependent structure factors.

In particular, after introducing properly scaled variable
we first showed that the linearized theory naturally leads t
classification of different types of instabilities in terms
properties of the free-energy density surface. Some feat
in the kinetics of decomposition in qualitative distinction
conventional Cahn-Hilliard theory were pointed out, such
an influence of the kinetic coefficients on the dispersion
lation of linear modes through the parameterG and a nonex-
ponential time dependence of the structure factors. Num
cal calculations for a simplified nonlinear model revealed
sequence of two instabilities, which in the case of fast str
tural relaxation~large G! occur on separated time scale
Both of these instabilities are well described by an associa
class of dispersion branches of the linearized theory. On
other hand, ifG is small, the observed patterns can be int
preted via spinodal decomposition subject to enhanced fl
tuations. This enhancement has its origin in the preceed
nonlinear evolution of structural order. As a consequen
the distinction between ‘‘secondary’’ spinodal decompo
tion and nucleation gets obscured as the initial concentra
before the quench,c̄, is close to the concentrationccs .

We expect that these qualitative conclusions concern
the early-time kinetics should also hold for systems in two
three dimensions, although our basic model may not dire
be applicable to real experiments. One limitation of t
model C equations~1! and ~2! lies in the fact that they pro-
vide only the simplest type of coupling between two ord
parameters. In fact, it has been shown that kinetic mean-fi
theories applied to lattice models of phase ordering norm
lead to more general couplings@19,7#. For example, the
equation of motion forc can contain additional terms pro
portional toD(dF/dc) and toD(dF/dc) @20#. Other impor-
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tant effects ignored here may arise from long-range ela
interactions or from a dependence of the kinetic coefficie
on the instantaneous nonequilibrium state. Nevertheless
present work may indicate the possibility to extract inform
tion on the kinetic coefficients from the experimentally o
served structure, e.g., by analyzing and comparing len
scales and time scales, which govern the process of hom
neous ordering and decomposition. More generally, we h
found that in a model of coupled conserved and nonc
served order parameters the relative magnitude of the res
tive kinetic coefficients can have a profound influence on
observed structures at early times.
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APPENDIX

The mode analysis of Sec. III can be generalized to
case where states6c are no longer equivalent,f (c,c)
Þ f (c,2c), hence allowing an additional coupling term pr
portional to (¹c)•(¹c) in the expression~3! for the free-
energy functionalF. Such a coupling may arise from nonlo
cal interactions between the variablec and the concentration
c. Instead of Eqs.~7! and ~8! the rescaled equations of mo
tion now take the form
n-
ls

r.,

B

v

ic
ts
he
-

th
e-
e
-

ec-
e

th
-
e

e

]c

]t
52GS 2Dc2gDc1

] f

]c D , ~A1!

]c

]t
5DS 2Dc2gDc1

] f

]cD , ~A2!

where the dimensionless parameterg measures the strengt
of that coupling.

Following Sec. III, the matrixA after linearization is now
replaced byT(H1k2s), with

s5F1
g

g
1G . ~A3!

Thermodynamic stability against fluctuations with fini
wave vectors requiress to be positive definite, i.e.,g2,1. It
is easily seen that expressions~18!, ~19!, and ~21! remain
unaffected byg, whereas Eq.~22! changes intov2(k)
;G(12g2)k2. Furthermore, in analogy to Eq.~23!, the
critical wave numbers are now determined by the nega
eigenvalues ofHs21. Since g2,1, there is a one-to-one
correspondence between negative eigenvalues ofH and
those of Hs21. Hence, althoughv6(k) and the critical
wave numbers do depend ong, the number of unstable
branches is independent ofg and follows the same criteria a
in Sec. II. This shows that the classification of mode spec
according to the possible combinations of sgn(fcc) and
sgn(detH) @see Figs. 2~a!–2~d!# also holds forgÞ0.
ra-
ve
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