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Early-time kinetics of ordering in the presence of interactions with a concentration field
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The interplay between ordering and spinodal decomposition in binary systems is investigated within time-
dependent Ginzburg-Landau theory for two coupled order parameters describing structural order and the
concentration. The linearized theory suggests a classification of possible instabilities, and the associated mode
spectra display marked deviations from the predictions of the conventional Cahn-Hilliard theory. Numerical
calculations for a simplified model indicate the possibility of sequences of instabilities. We also show that the
relative magnitude of kinetic coefficients can have a profound influence on the observed domain patterns.
[S1063-651X97)11411-9

PACS numbd(s): 64.60—i

. INTRODUCTION ac SE

E :FCA E, (l)
Consider a binary system that undergoes a first-order

phase transition where the disordered mixture transforms to

an ordered structure via diffusional motions of atoms or mol-

. . . . Yy SF
ecules. Physical examples include many solid materials such —=-T, —,
as metallic alloy§1] or adsorbed layers on solid substrates at oy
[2], but are also known in the field of complex fluif3].

In the following we assume the transition to be strongly of ) )
first order(as, for example, in the Li-Al or Mg-In alloy sys- Where F[c,¢] denotes the underlying Ginzburg-Landau
tem), i.e., to display a pronounced miscibility gap in the free-energy functional anfi,, andT’; are phenomenological

(T,c) plane of the phase diagram. HeFedenotes tempera- kinetic coe.ﬁicien.ts. The late-stage dynamics of model C
ture andc is an atomic concentration variable. A common have been investigated recently by a number of autfidrs

way to study the dynamics of the transition is to quench the-3l- By contrast, we will focus here on the early stages be-
system from an initial disordered equilibrium phase, the foré domain coarsening becomes the dominant process,
phase, at temperatuf® to a final temperaturg@; inside the where our model shows more structure than the conventional

two-phase region separating thephase from the orderes Cahn-HiIIiard_ theory (“model B™). After discussing the _
phase. The subsequent time evolution of the system will thef12in Properties of the free energy surface and the reduction
be governed by an interplay of ordering and phase separ&f 0ur equations of motion to a dimensionless fdSec. I),

tion. In particular, after a quench into the regime wheredhe W€ Presentin Sec. lii the linearized theory, from which we
phase is unstable, spontaneous growth of fluctuations of tHfer & systematic classification of different kinetic instabili-
underlying structural order parametgrand growth of long- ties. T_he|r phys!cal significance is confirmed in subsequent
wavelength concentration fluctuations become competingUmerical solutions of the nonlinear proble(Sec. IV).

processes. Previous work, based on thermodynamic argd€reby, we show that after a sudden quench fromdhe
ments [4] and on studies of microscopic kinetic models phase a temporal sequence of instabilities can occur. In fact,

[5—7], has shown that this can lead to a sequence of instef—or the case of fast structural relaxation we observe “congru-

bilities and to a variety of transient structures in the early®nt ordering”[5] prior to an unstable growth of concentra-

stages of the process. In fact, processes of homogeneofign fluctuations, which, however, remain strongly coupled
(“congruent” [5]) ordering and subsequent decompositiont0 the structural order parameter. Both of these successive
have been detected experimentally, for example, inoth#’ instabilities have a character as predicted by the linearized
transition of Li-Al alloys, although the question concerning theory. By contrast, in the case of slow structural relaxation,
the nature of the second process seems to be open up to né¥fglering and phase separation occur simultaneously. As a
[8,9]. result, we obtain strongly fluctuating patterns whose struc-

In this paper we investigate a time-dependent Ginzburgture factors cannot be described by the linearized theory in
Landau model that provides a minimal description of theany relevant time interval. The distinction of fast and slow
interplay of ordering and spinodal decomposition. In the lan-structural relaxation becomes even more relevant if the state
guage of Hohenberg and Halpefit0] we will be concerned right after the quench is close to the “conditional” spinodal
with “model C,” which in its simplest form consists of [4]. In this way we find different kinetic scenarios depending
coupled equations of motion for a one-component, nonconen the quench conditions and on the relative magnitude of
served order parameter fiefe(r,t) and a conserved concen- the kinetic coefficients’. andl’,. A summary of our results
tration field c(r,t). In the absence of thermal noise, thesetogether with a discussion of their experimental relevance is
equations take the form given in the last section.

2

1063-651X/97/566)/69098)/$10.00 56 6909 © 1997 The American Physical Society



6910 H. P. FISCHER AND W. DIETERICH 56

point (c.s,#=0) with vertical slope. Clearly, at that
point, the concentration-dependent free-energy density of the
disordered phasd,,(c)=f(c,i#y=0), and the “conditional
free-energy density”[4] of the ordered phasefgs(c)
=f(c,¥(c)), are equal. A simple form fof(c, ) consistent
with these requirements is

fe,y) = const.
170)
- det(H)=0

1.0

v f(c,)="fo(C)+f1(4)— mcy?, )
0.5 where
fa() =ry?+uy’+uy®, (5)
with >0, r=7c,s, U>0, v>0, and fj(c)>0 in some
range of concentrations larger thap;. An example used
0.0 later in numerical calculations is

f(c,¥)— ue=y*(1-y?)>+4(yp*—c)?, ®)
FIG. 1. Contourplot for the thermodynamic potential E§). in
the (¢, ) plane (y=0). Here the compositional variabéeis cho-  with ¢,=0, c;=1, andyz=1. The contour plot in Fig. 1 is
sen such that the disordered phase t\as0, whereas the ordered actually based on this expression. Also shown in Fig. 1 is the
phase corresponds ;= 3=1. The curvey(c), which satisfies  concentrationc, corresponding to the *“conditional spin-
f,=0, is represented by the solid line. The ordering spinodal ispdal” [4] defined bydzfﬁldczzo. Since in this work we are
reached at,s=0.125. The dashed curve corresponds tdieed,  not interested in the formation of antiphase domains, we re-
whereH is defined by Eq(15); it is the I|m|t_of the unstable region  ctrict ourselves in the following to states=0.
of the free-energy surface. The intersection of the dashed and the afier this discussion of the essential structure of the free-
solid line defines the conditional spinodalGt=0.625. energy densityf (c, ), we turn now to the dynamical equa-
tions (1) and (2) and rewrite them in dimensionless form.
This can be achieved in different ways; in the version pref-
Our starting point is a free-energy functiorfigic,y] of ~ €ered here, thermodynamic and kinetic factors remain sepa-
the Ginzburg-Landau form rated. Lengths will be measured in units of a length.e.,
r/é—r, which for convenience may be chosen as the corre-
1 1 lation length of the structural order parameteg,
fe.¥)+5 Kc(Ve)?+ > Ky (V)?|, ~(K,/r)Y2 Furthermore, we introduce dimensionless order
3) p%rametgrs by setting/ 1,00—_> ¢ c/co—c, Whe_re we require
yoKy=coKe. The remaining freedom in the order-
where, for simplicity, we assume that the free-energy densitparameter amplitudeg, andc, can be used to rescale the
f of a uniform state satisfiel(c,#)="f(c,— ). This sym- analytical expreszsmn for the funct|0i4(c,¢//). Finally, the
metry condition applies, for example, to metallic alloys, "eplacements/(£°K.) —f andtl'cK./¢"—t lead to the fol-
where the ordered state can be described by the preferenti@wing form of Egs.(1) and(2):
occupation of one of two equivalent sublattices.

Il. GINZBURG-LANDAU MODEL

F[C,gb]:f d3r

At this point let us further specify the general character of Jc =A( _Ac+ ﬂ) @
the functionf(c,¢). First, considering a fixed temperature at ac)’
T=T;, it should allow for coexistence of a stable disordered
phase (/,=0) with concentratiorc, and an ordered phase ap of
(cs,4p). Hence the grand canonical potentiat uc, where i —F( —Ay+ Iﬂ , (8

u denotes the chemical potential, displays local minima at
the corresponding points in the,) plane(see Fig. 1, with
fo,—uc,=fz—ucgz. To be specific, suppose that ordering is
favored upon increasing the concentration, and therefgre
>c,. Next, we assume a points>c, on thec axis in Fig.

1, which corresponds to the ordering spinodal, such that

(fyy) y=0=0 for csc,s, respectively. Here we use the no- Il. LINEARIZED THEORY
tation (9/9y)f=f,, etc. Finally, for fixedc, f has a mini- . . ) .
mum with respect toy along a curveg(c) in the (c,) Within the framework of a Im_ear_lzed the_:ory, we examine
plane, which satisfie$,=0 and necessarily passes the or-the temporal evolution of an initially uniform, stationary
dered stated,, /). This curve is indicated in Fig. 1 by the State €.¥) satisfying ()¢, =0. Hence the corresponding
solid line. It is natural to assume that this curve also meetoint (c,#) in Fig. 1 either lies on the axis (¥=0) or on
the ordering spinodalcs,#=0). [In fact, by expanding the curvey(c). It is convenient to introduce a vector nota-
f(c,y) it is seen that a curve satisfyinf,=0 enters the tion

with the dimensionless coefficient

I'=¢T K, /T K. 9
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c(r,t) ﬂ
(r,t) 7k

After linearization with respect to small deviatior
from the initial statex,, Egs.(7) and (8) are solved by
writing

x(r,t)= y o Xo= (10

x(r,t)=xo+ x explik-r+ wt), (11

which for fixed wave vectok yields a (2x2) eigenvalue
problem

A Sy=—w dy, (12
where
A=T(H+K3), (13
with
Tz{kz O} (14)
0T
and
H=“:‘ :;‘: . (15)

| is the (2x2) unit matrix, and the derivatives in E{L5)
are taken aty,. Since A is a product of two symmetric
matrices, withT positive definite fork#0, the eigenvalues
w; , of A are real. Explicitly,

w1 AK)=—(Ay+ A+ D)2, (16)

with
D=(Ap—Ay)?+4A A, . (17

For these two “dispersion branchess; k), we use in
the following the notation w.(k), such that w, (k)

>w_(k). It should be noted here that unlike the conven-
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FIG. 2. Schematic behavior of mode spectra for the four pos-
sible combinations of sghy,) and sgn(det).

Next we obtain the critical wave numbeks>0, defined
by w. (k;)=0. Let\; and\, be the eigenvalues of the ma-
trix H. From Eq.(12) it follows immediately that the critical
wave numbers are determined by the negative eigenvalues of
H: If A ,<O0, then

kZ,=—N\,. (23

Therefore the range of unstable fluctuatiorsio<k. , in
the corresponding branch depends on the couplipgbe-
tween order-parameter and concentration modes, but is of
course independent df. We also conclude that the number
of unstable branches is given by the number of negative ei-
genvalues oH.

The above considerations already allow us to classify the
possible types of dispersion relatiosas (k) according to the
signs of deH=X\ 4\, and off,,. Four cases, schematically
depicted in Fig. 2, can be distinguished.

A.case(l): f,,>0, detH>0

These two conditions imply that both eigenvalugs are

tional Cahn-Hilliard theory, the behavior of the two branchespositive. This is a stable situation, as illustrated in Fi@)2

as a function ok in general depends dn, i.e., on the ratio
of the two kinetic coefficient§'; andI’,,; cf. Eq.(9). Thatk

dependence can be discussed most directly by considering

the following special cases. In the limit—0 we have the
two solutions

w1(K)=—(deH/f ,,)k?+ O(k*), (18
w,(K)=—(T'f,,+gk?)+0O(k?), (19

with
g=T+18/f,,, (20

whose assignment to-. (k) will depend on the signs of det

H andf,,. In the opposite limit of large, the two equa-
tions (12) become uncoupled, and we find
w_(k)~—k?, (21

w (k) ~—Tk>. (22)

B. case(ll): f,,<0, detH<O

In contrast to the previous casd, has one negative ei-
genvalue. This leads to one unstable branch, whose disper-
sion relationw , (k) for smallk is given by Eq(19): see Fig.

2(b). Its eigenvector in the limik— 0 only retains a/ com-
ponent and thus corresponds to growth of structural order. In
the absence of any coupling,=0), this branch would
describe a “model-A"-like instability[10]; the associated
critical wave vectork. determines a typical length scale
27k ! of ordered domains in the initial stages of ordering.
[If f¢,#0, the coefficienty, Eq. (20), may turn negative.
The unstable branch then behaves as indicated by the dashed
line in Fig. 2b).]

C. case(lll ):

Again, we have one unstable branfdfig. 2(c)], which
now corresponds to Eq18), showing that it starts out from
zero with positive curvature. Note that in view ©f=0 the

fyy>0, detH<O
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coefficient in front of thek? term in Eq.(18) is equal to * * ' ' ' : '
d?fz/dc?. The eigenvector of the unstable branch is of '
mixed character for alk, which means that in general we
encounter simultaneous growth of order-parameter and cor
centration fluctuations. Ak=0 the componentg$c and &y

of the eigenvectoby satisfy éc/ 6¢=—f,,/f.,; hence, the
eigenvector is tangential to the curyéc).

o010 F3

D. case(lV): f,,<0, detH>0

Here we have two unstable branches, as shown in Fic
2(d). Again, the casg<O0 is indicated by the dashed line.

Let us now discuss the physical content of the foregoinc
analysis by using the free-energy model described in Sec. |
Application of our calculations to a quench from thehase : \ : :
suggests that different ordering scenarios are possible. Col 00 02 04 06 08
sider first the situation where the evolution starts from a ref-
erence state witlt>c,s, =0, andf,.>0. Then the pri-
mary instability corresponds to cadé), where in our model
g>0. This is a conventional model-A-type instability, where
ordering evolves in a uniform manner with maximum growth
at k,,=0. Initial fluctuations in the concentration, however,
will decay. Of course, the linear approximation breaks dow
once the condition

0.00

FIG. 3. T dependence of unstable dispersion brancl{k) cal-
culated from the model free energy, H@), and a reference state
¢,=0.5, ;= ¢(c,)=0.73[see also Fig. @)]. The inset shows the
wave vectork,, corresponding to maximum growth as a function of

“hatk,, as a function of” appears to display ¥ depen-
dence forl'<<1, whereak,, becomes constant fdr>1.

|60 o()] = 6o 0)exp[ @ (O)tD)| <[ b (24) Our discussion so far in this section suggests that a
guench to a state>c,s, =0 with f..>0 actually can lead

ceases to be valid. Qualitatively, however, one expects thi® @ sequence of two transformations[i#1, namely, the
trajectory in the ¢,i) plane essentially oriented in the  &nd subsequent phase separation into coexisting ordered and
direction, until it reaches some homogeneous stationary stafisordered domains, accompanied by a relaxation of the or-
(Cy,thy) With c;=C, ¢12(}/(C—) which satisfiest ,,(cy, 1) der parameters to their respective equilibrium values. Se-

>0. Clearly, this kind of description will be applicable only ?uen(t:ﬁs OLinStab”iti‘f_S arz krt\o(\j/\_/n frofm exp_efrir?Eét?Q] andd |
if “spreading” of the trajectory remains negligibly small, oM the above-mentioned studies of Specific 1atlicé models

which requires thermal noise to be negligible and the procesJéS_?]' _In.order to confirm the appearance of such phe”"”.’"
to be sufficiently rapid in comparison to phase separationcn@ Within the frame of model C, we have solved numeri-
i.e.,, I'>1. This type of ordering under constant compositionéally the nonlinear equatlc_)r(s?) a.nd (8). Before we t“”.‘ to
(“congruent ordering’) has been analyzed recently by Chenthat' let us compl_e?e our d's‘?‘_JSS'O” O.f Fig. 2 and con_5|der the
and Khachaturyan in numerical studies of certain discret&ase(lv)' A su.ff|0|ent condition for its occurrence By
alloy models with specific sets of interaction constdsts]. O together withfe.<0. Then the two_eigenvectors of the
Suppose now that the stationary statg,¢,) (see above ~ MatrixA, Eg.(13), in an initial state W|th¢/=0_ WlI_I ha\{e the
is taken as the reference state in the foregoing analysis. Thfe'm (6¢,0) and(0,5¢). We remark that this situation has
state will be metastable if dét>0 [case(l)], such that sub- SOme bearing on the work by Bindet al.[14], who studied
sequent equilibration proceeds via nucleation, but it will beSPinodal decomposition in the presence of a slowly relaxing
unstable if deil<0. The limiting case dét=0 corresponds (Nonconservedvariable ¢, which, however, had no disper-
to the “conditional spinodal’[4]. If detH<0, the situation Sion (Ky-o) and hence led to a different form of the mode
agrees with caséll), which is reminiscent to conventional SPECtrum at largek. _ -
spinodal decomposition driven by the conditional free energy EXperimentally, the dynamics of the transition are often
fg(c). In comparison W_ith the sta_ndard Cahn-Hilliard _stud|ed Wlth the alt_j of scattering techniques, which yield
theory, however, some important differences should pdhformation on the time-dependent structure factors,
noted. Spatial fluctuations in structural order and composi Seck ) =(|8cD),  Syu(k)=(| (DD, (25)

tion remain coupled, according to the direction of the asso-
ciated eigenvector. This direction changes vkth[In gen- defined in terms of the Fourier componends,(t) and

eral, it is not tangential to the curve(c), apart from s, (t) of concentration and order-parameter fluctuations.
k=0.] Furthermore, as mentioned before, the spectrum ofjere averages are taken over the initial fluctuations. Assum-
unstable modes explicitly depends on the paramB{ére.,  jng an instantaneous temperature quench, the initial values at
on the ratio of kinetic coefficients. To give an example, wei—q in Eq. (25) correspond to the equilibrium structure fac-

plot in Fig. 3 thel’-dependent spectra of unstable modes andy,s at the temperatufg before the quench. In addition, we
the associated location of the maximum growth faten kK gefine

space using the free-energy model, E&), and a reference
state y; with componentsc;=0.5, ¢;=(c;)=0.73. Note Sey(K,t) =Re(8Cy (1) Sp_ (1)) =Syc(K,1). (26
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Equations(25) and (26) are readily evaluated either by tak- 1.0 . ;
ing Laplace transforms of the equations of motion, which in 05 Lo e =00
a matrix form ard 15] ’
0.0
J - 0.5
— S(=—[AS()+S(HAT], (27)
0.0 : : :
1=0.12
lating &c,(t) and S¢,(t) from the linearized equations of 0.0 : | s
motion. In Eq.(27) and in the rest of this section, we have 0.5 | et S
dropped the variabl& in our notation. The result is 00 ‘ ‘ l
B T T T t=30
S.(t)y=a,e??+'+peler oty g go-t (28) 05 [ o o e T
with 00 A R A A
05 [ 1
ax:[(All_w:)zscc(o)“'z(All_w:)A123c¢(0) 0.0 & A ”"’1:50
+A%S,,(0)]/D (29) 05 ) HE : U ‘:"I‘:‘ UU
and 00 T S0 o 150 200

=—2[(Ayg—w ) (A~ w_
b [(Aw +Au 15(0) FIG. 4. Simulated patterns(z,t) (dashed linegsand (z,t)
+A1(A11— A Scy(0) (solid lineg at a series of times for an initial concentratien
2 =0.5, 4=0, andI'=10, showing the emergence and the transient
+ AlZSW(O)]/D' (30) persistence of a homogeneously ordered state up to aldi and

. . subsequent decomposition.
Here S;,(0)=0 if the quench is from thex phase.

An analogous expression is found 8,(t), which dif- . . o
fers from the above expressions by exchanging indice®1 d.'men.s'on' Specnﬁcally, we take a system ofllength 500
(in units of the correlation length), with periodic boundary

and, correspondinghiG . As seen from these results, the conditions[16]. Our initial conditions correspond to a mean
structure factors display a nonexponential time dependencgoncentrationé_and random quctuations\cf)zAzj;:O 05
due to the superposition of three terms involving different o

rate constants. Their growth or decay with time depends Or§|nce in this study we are not interested in the formation of

the behaviors otv. summarized in Fig. 2. Apart from case antiphase. Qquins_,we also inplude in the initial condjtions a
(1) (see abovk the first term in Eq(28) is the most rapidly small positive b_|as//= 0.05, which suppresses relaxation to-
growing term. The behavior of the second term will be goy-Wards states withy<0. All results for the structure factors
emed by (. +w_)=—[Tf,,+ K2(T+f.)+k*], which are gveraged over _300 independent initial conflguratlons_.
can take either sign, whereas the last term will always deca: First, let us consider the case O.f fast struc_tural relaxation,
with the exception of caséV). g._g.,_l“zlo. Elgure 4 shows the time evolution of patterns
within a section of length 200 of the system. Dashed lines
and solid lines represent the concentratiiz,t) and the
structural order parametef(z,t), respectively. The initial

In this section we present some numerical solutions of th€oncentrationc=0.5 satisfiesc,s<c<c.s. Two stages are
nonlinear equationé7) and (8), using a free energy(c, ) clearly distinguished. In the first three configurations with
as given by Eq(6). One purpose of these calculations is to =0.12, we observe that(z,t) stays close to the constarit
demonstrate that after a quench of thephase below the Wwhereasy(z,t) shows unstable growth and relaxes more or
ordering spinodal our system can display a sequence of iless homogeneouslywith larger fluctuations around
stabilities of the type discussed before, provided fhatl.  =0.08 to a valuey,;=0.73. Pictorially, this corresponds in
Such a scenario should be expected from the discussion inig. 1 to a transition in the vertical direction to a state
the previous section. A quite different behavior, however,(c,,#;) with c;=c on the curvay(c). This state reached by
will arise for I'<<1, which corresponds to slow structural the process of “congruent orderind8] persists without no-
relaxation. Intuitively, since in thec() plane the evolution table changes up to a tinte=10. For larger times, see the
in the ¢ direction then is slow and proceeds in a region of thesubsequent configurations in Fig. 4, we observe a second
free-energy surface with dé&<0 (see Fig. 1, we now ex- instability, initially characterized by coupled small-
pect the trajectories to spread initially as a consequence @mplitude concentration and order-parameter fluctuations
the fluctuations in the initial state. From the beginning thewith a typical wave vectok,,=0.52 (see below. As time
process will then be characterized by a simultaneous occuproceeds, these fluctuations grow until the system breaks up
rence of ordering and phase separation and will be mucinto a nearly periodic structure of disordered and ordered
more sensitive to fluctuations than in the casel. domains which correspond to the two equilibrium phases

For a first demonstration of these qualitative issues in th@nd 8. Comparing the patterns for= 40 andt=>50, we also
frame of our model, it suffices to study the problem in onesee the onset of coarsening via period doublibd], which

IV. NUMERICAL SIMULATIONS
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5)
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L T=

Sy o1} 1 S,y 1,=0)

S, (ki) /S, 0k

0.0 0.5 1.0 15 20 2.5

FIG. 5. Normalized time-dependent structure faSpy(k,t) for lized time-d d K
different timest=0.01 up tot=0.08 in steps of 0.01, using FIG. 6. Normalized time-dependent structure fa8gy(k,t) for

=0.5, =0, andI'=10 (see the patterns of Fig,).4Dotted lines: different timest_zl_o up tot=35 in steps of 5 usir_lg the_same
predictions of the linearized theory. The inset shows the total intenparameters asin Figs. 4 an(_:l[Elur_ves f_or the larger times dlsplay
sity 1,,(t). The dashed straight line has a slopa Z0). mcreased statistical flqctuatlons lmreglor?s W.here t.he. normalisa-
tion factor S..(k,t=>5) is small] Dotted lines: predictions of the
linearized theory with the same reference state as in Fig. 3. Arrows
indicate the associated wave vectérs=0.52 andk,=0.75. The
inset shows the total intensity(t). The dashed straight line has a

&lope 20, (k).

is an effect specific to one dimension.

In their respective short-time regimes, the two instabilities
displayed in Fig. 4 can be related to the predictions of th
linearized theory with reference statgqg=(c,0) and x;
=(c,y,), respectively. To show this we first plot in Fig. 5 structure factor appears to develop a second peakkpéar
the structure factorS,,(k,t) normalized with respect to which rgflects_ period doubling. We aI;o c_alculated the Iinte—
S,,(k,0) on a logarithmic scale, for a series of times up tograted intensityl oo(t) = 2 Sec(k,t), which is compared in
t=0.08. These results are compared with the linearizedhe inset with the leading behavior according to the linear-
theory of Sec. lli(see the dotted lingswhich simply gives ized theory It (t)~2w., (kn)(t—to). _
IN[S,/(kt)/S,/(k,0)]=2w, (K)t as the leading contribution. Next, we turn to the situation of slow structural relaxation
Herew, (k) is calculated with respect to the reference stateand choosd’=0.1,c¢=0.5. Our calculations show that spa-
Xo. This yieldsk,=~2.4 and a maximum growth rate k, tial fluctuations inc(zt) and y(zt) now evolve simulta-
=0 [see the behavior of the unstable branch in Fidy)R neously. These fluctuations have a considerably larger am-
Good quantitative agreement is found in Fig. 5 up to timegPlitude than in Fig. 4 for times<30, and the patterns appear
t~5%1072. The inset shows a corresponding comparisorinore irregular. This can be understood qualitatively from the

between the simulated total intensity, aforementioned “spreading” of trajectories, which is illus-
trated in Fig. 7. Starting from one particular configuration of
IW(t):Ek Syu(k,b). (31) 10 . . '
—
and the approximate result Iy, (t)~2w, (O)t of the linear- 08l 7 i
ized theory. L Gw
An analogous comparison can be made for the secont /
instability. As “initial” time we choosety=5, where the 06 & 1
system is close to a homogeneously ordered state characte #F %kob
ized by y; (cf. Fig. 4). In order to eliminate the unknown " N 3
fluctuations in that state, we study the evolutionSpf(k,t) 04 / o \\: . oo 5% .
normalized with respect t&.(k,tp). Apart from smallk, R e -0z=100
Fig. 6 essentially confirms a growth according to the predic- \\A\ "C\' f e--ez=150
tions of the linearized theory, IB.4(k.)/S.(k t) ]=2w- (K)(t 02+ o \ A Mo I
—ty), as long ag=<30. The growth ratew, (k) is calculated [ v . v 22300
here from the reference state and corresponds to the upper !
dispersion branch in Fig.(®). In particular, the location of 0.0 : o ol o T o T o

the wave vectok,,=0.52 for maximum growth and the criti-
cal wave vectok,=0.75 nicely agrees with the linearized

theory(see the arrows in Fig.)6This comparison, of course, FIG. 7. Spread of trajectories in the,{) plane due to fluctua-
becomes meaningless for longer times 30, where the tions, forT'=0.1 (see texkt
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spinodal was emphasized long ago by BinfE8]. As indi-
cated above, the relevant fluctuations here are not just the
equilibrium fluctuations in the state before the quench, but
amplified fluctuations, which grow ds becomes smaller.
Finally, we also calculated the structure facty(k,t)
related to the patterns in Fig. 8. Foe 20 it develops a main
peak at a wave vector which reflects the typical spatial ex-
tension ofa-phase nuclei. Additional calculations for much
VR larger times(up to t=10°%) show that these nuclei undergo
L ) il diffusive growth and that the main peak $.(k,t) shifts to
smaller wave vectors. At the same tinfiephase domains
develop from the rim ofa-phase nuclei. Phase separation,
, initiated at very short times by a spinodal mechanism, thus
; | ; proceeds via growth of and 8 domains out of a metastable

cooo 0000 090909
[ e -] N AN [ "Ny o)

8:% U i A t=100 background. In principle, such considerations might apply to
04 - ; . guench experiments in alloys, where the state right after the
021 . . . i guench is close to the conditional spinodal.

0 50 100 150 200

V. SUMMARY AND CONCLUSIONS

FIG. 8. Simulated patterns(z,t) (dashed lingsand y(z,t)

(solid lineg at different times forc=0.65>c.=0.625 andI’
=0.1.

We investigated some general aspects in the early-time
kinetics of ordering and phase separation within coupled
time-dependent Ginzburg-Landau equations of the type of

initial fluctuations, we plotted pairs of calculated valuesModel C[10]. This model provides a simple, yet general
c(zt), ¥(zt) for some fixedz, while time progresses in frame for discussing different ordering scenarios as detected

stepsAt=0.5, which yields a discrete trajectory. Repeatingpreviously in kineftic me_a.n-field theories for specific alloy
this construction for different leads to a set of trajectories M°dels[4—7] and in addition allows us to demonstrate the
which evolve under increasing their mutual distances, befordnPortance of kinetic effects in determining the time-

they reach a common curve. This curve can be shown to b€éPendent structure factors. .
closely related to the equilibrium profile of a free interface I Particular, after introducing properly scaled variables,
between thea and 8 phases, which satisfie8F/sc=0 we first showed that the linearized theory naturally leads to a

SF/84=0. [By contrast, if the same analysis were done forclassification of different types of instabilities in terms of
I'=10 and for the same initial fluctuation amplitudes thenproperties of the free-energy density surface. Some features
' in the kinetics of decomposition in qualitative distinction to

all such trajectories almost would collapse until they reaCHconventional Cahn-Hilliard theory were pointed out, such as
the curve y(c) at a rather well-defined point=0.5, ¢, Y P '

~0.73] The whole process foF =0.1 can be regarded as an influence of the kinetic coefficients on the dispersion re-

spinodal decomposition where the initial fluctuations are am[ation of linear modes through the paramelteand a nonex-
pI P . ponential time dependence of the structure factors. Numeri-
plified strongly through the concurrent nonlinear structural

relaxation. As a conseauence. one can show that the Structucal calculations for a simplified nonlinear model revealed a
. . q ’ o X §8quence of two instabilities, which in the case of fast struc-
factor S..(k,t) displays a much broader distribution than in

. ) . ) tural relaxation(large I') occur on separated time scales.
F'g' 6 aﬂd that the linearized theory fails to descie(k.1) Both of these instabilities are well described by an associated
in any time interval.

. X . L ... class of dispersion branches of the linearized theory. On the
A particularly interesting situation occurs when the initial other hand, ifl" is small, the observed patterns can be inter-
concentration is OUtS'.d?. the Cor_ldltlonal splno_dal region, preted via ,spinodal deéomposition subject to enhanced fluc-
=>Ccs. For largel” the initial ordering process will then lead . ations This enhancement has its origin in the preceeding
to a homogeneous metastable state. However, for siall

. . . , nonlinear evolution of structural order. As a consequence,
part of the trajectories will reach the unstable region of thethe distinction between “secondary” spinodal decomposi-

curve ¢s(c) and initiate phase separation. This is seen fromjon and nucleation gets obscured as the initial concentration
the patterns in Fig. 8, which were calculated é6¥0.65 and  pefore the quencft, is close to the concentratian.

I’=0.1. There a localized fluctuation is observed which for \ye expect that these qualitative conclusions concerning
increasing time becomes a nucleus of the disordered phasge early-time kinetics should also hold for systems in two or
while the rest of the system relaxes towaodand ¢ values  three dimensions, although our basic model may not directly
which correspond to the metastable part of the cugge). be applicable to real experiments. One limitation of the
For a given magnitude of the initial fluctuations, the fre- model C equation$l) and(2) lies in the fact that they pro-
quency of the occurrence of sueiphase nuclei and the vide only the simplest type of coupling between two order
associated length scale depends sensitively" ot follows  parameters. In fact, it has been shown that kinetic mean-field
that the quantityc., loses its physical significance as that theories applied to lattice models of phase ordering normally
concentration which separates the metastable from the umead to more general couplind49,7]. For example, the
stable part of the curvé(c), whenT' becomes small. The equation of motion for/ can contain additional terms pro-
fact that fluctuations generally prevent a precise location of gortional toA (SF/8y) and toA(SF/8c) [20]. Other impor-



6916 H. P. FISCHER AND W. DIETERICH 56
tant effects ignored here may arise from long-range elastic Y of
interactions or from a dependence of the kinetic coefficients —r = T —Ay—vAc+t Emik (A1)
on the instantaneous nonequilibrium state. Nevertheless, the
present work may indicate the possibility to extract informa-
. . h .. . _ Jc (;f
tion on the kinetic coefficients from the experimentally ob oAl —Ac— VAUt —

. . = YAY+ —], (A2)
served structure, e.g., by analyzing and comparing length at dc

scales and time scales, which govern the process of homoge-

neous ordering and decomposition. More generally, we have/here the dimensionless paramejemeasures the strength
found that in a model of coupled conserved and nonconef that coupling.

served order parameters the relative magnitude of the respec- Following Sec. Ill, the matriXA after linearization is now

tive kinetic coefficients can have a profound influence on theeplaced byT (H+k?¢), with

observed structures at early times.
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APPENDIX

is easily seen that expressiof3), (19), and (21) remain
unaffected byy, whereas Eq.(22) changes intow_ (k)
~T'(1—y?)k2. Furthermore, in analogy to Eq23), the
critical wave numbers are now determined by the negative

The mode analysis of Sec. Il can be generalized to theigenvalues oHo 1. Since y°<1, there is a one-to-one

case where statesx ¢ are no longer equivalentf(c,)

# f(c,— #), hence allowing an additional coupling term pro-
portional to Vc)- (V) in the expressiont3) for the free-
energy functionaF. Such a coupling may arise from nonlo-
cal interactions between the varialfeand the concentration
c. Instead of Egs(7) and (8) the rescaled equations of mo-
tion now take the form

correspondence between negative eigenvaluesH ond
those of Ho~ 1. Hence, althoughw. (k) and the critical
wave numbers do depend op the number of unstable
branches is independent gfand follows the same criteria as
in Sec. Il. This shows that the classification of mode spectra
according to the possible combinations of dgpX and
sgn(deil) [see Figs. @)—2(d)] also holds fory+0.

[1] For recent reviews, se®olids Far from Equilibriumedited by
C. Godreche(Cambridge University Press, Cambridge, En-
gland, 1992, Phase Transformations in Materials, Materials
Science and Technologyol. 5, edited by P. HaasefVCH
Weinheim, New York, 1991

[2] K. Binder, W. Kinzel, and D. P. Landau, Surf. S@il17, 232
(1982.

[3]J. K. G. Dont, An Introduction to Dynamics of Colloids
(Elsevier, Amsterdam, 1996

[4] S. M. Allen and J. W. Cahn, Acta Metalt4, 425(1976.

[5] A. G. Khachaturyan, T. F. Lindsey, and J. W. Morris, Jr.,
Metall. Trans. A19, 249 (1988.

[6] Long-Quing Chen and A. G. Khachaturyan, Phys. Revi&B
5899(1992.

[7] V. Yu. Dobretsov, V. G. Vaks, and G. Martin, Phys. Rev. B
54, 3227(1996.

[8] J. Lendvai and H. J. Gudladt, Z. Metallk84, 242 (1993.

[9] B. Noble and A. J. Trowsdale, Philos. Mag. Al, 1345
(1995.

[10] P. C. Hohenberg and B. I. Halperin, Rev. Mod. P48, 435
(2977.
[11] K. R. Elder, B. Morin, M. Grant, and R. C. Desai, Phys. Rev.

B 44, 6673(199).

[12] A. M. Somoza and C. Sagui, Phys. Rev58 5101(1996.

[13] C. Sagui, A. M. Somoza, and R. C. Desai, Phys. Re\aOE
4865(1994).

[14] K. Binder, H. L. Frisch, and J. g&le, J. Chem. Phy$5, 1505
(1986.

[15] J. Jmkle and M. Pieroth, J. Phys. Condens. Mat2er4963
(1990.

[16] The grid spacingAz is chosen as\z=¢/2, which is much
smaller than Z/k. in the cases studied here. For the integra-
tion in time, we used a Runge-Kutta algorithm with adaptive
stepsize control.

[17] J. S. Langer, Ann. PhysN.Y.) 65, 53 (1972.

[18] K. Binder, Phys. Rev. &9, 341(1984).

[19] G. Martin, Phys. Rev. B0, 12 362(1994.

[20] In the present continuum theory, kinetic couplings of the type
discussed in Ref$19] and[7] would lead to additional terms
~0(k?) in the matrix T, Eq. (14). This would modify the
mode spectra shown in Fig. 2 to ordet. SinceT remains
positive definite, our conclusions with respect to the number of
unstable branches and with respect to the critical wave num-
bersk. would, however, remain unchanged.



